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Executive Summary

An effective and robust interface element technology able to connect independently

modeled finite element subdomains has been developed. This method is based on the use of

penalty constraints and allows coupling of finite element models whose nodes do not coincide

along their common interface. Additionally, the present formulation leads to a computational

approach that is very efficient and completely compatible with existing commercial software. A

significant effort has been directed toward identifying those model characteristics (element

geometric properties, material properties and loads) that most strongly affect the required penalty

parameter, and subsequently to developing simple "formulae" for automatically calculating the

proper penalty parameter for each interface constraint. This task is especially critical in

composite materials and structures, where adjacent sub-regions may be composed of

significantly different materials or laminates. This approach has been validated by investigating a

variety of two-dimensional problems, including composite laminates.



1. INTRODUCTION

The ways in which analysis and design are performed have changed extensively during

the past decade. Automated design algorithms are now plentiful and increasingly robust, and no

longer are individual components of a structure designed in a vacuum. Facilitated in part by

product data management (PDM) and product lifecycle management (PLM) software and

internet-based data sharing, integrated design activities are now possible. Further, the speed and

economy of modern computers have enabled engineers to perform many large scale analyses that

were unheard of a decade ago. It is now common to analyze and simulate the response of entire

aircraft, spacecraft, automobiles, ships, and other structural assemblies to a variety of complex

and combined types of loading. The CPU time required to perform such analyses is very small

compared to the time required for engineers to create the mathematical and computer models,

and the latter effort is usually the most expensive component of a large scale analysis or

simulation.

With model sharing and large scale analysis activities on the rise, it is becoming evident

that improved technology for building computer models is needed. One issue that arises often is

the need to perform a unified analysis of a structural assembly using sub-structural models

created independently. These sub-structural models are frequently created by different engineers

using different software and in different geographical locations, with little or no communication

between the teams of engineers creating the models. As a result, these models are likely to be

incompatible at their interfaces, making it very difficult to combine them for a unified analysis of

the entire assembly.

Finite element interface technology has been developed during the past decade to
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facilitate the joining of independentlymodeledsubstructures.Unconventionalapproacheshave

beenemployedto connectspecialelementsbasedonanalyticalsolutionsto finite elementmodels

[1-2]. In [1] a near-field solution for a dynamicallypropagatingcrack at the interfaceof two

dissimilaranisotropicelasticmaterialswassuccessfullyimplementedinto ahybrid-displacement

finite elementformulation.In [2] Lagrangemultiplier termsareusedto couplea specialelement,

basedon astressanalyticalsolution,to standardfinite elements.

In orderto takeadvantageof parallelcomputing,Farhatandcolleagues[3-4] developeda

domaindecompositionapproachfor partitioningthe spatialdomain into a set of disconnected

subdomains,eachassignedto an individual processor.Lagrangemultipliers were introducedto

enforce compatibility at the interface nodes.In [5] non-conforming"mortar" elementsare

employedto connectincompatiblesubdomainsusingaconjugategradientiterativetechniquein a

domaindecompositionschemedesignedfor parallelcomputers.

Thefinite elementinterfacetechnologydevelopedat NASA LaRC [6-10] andelsewhere

[11] allows the connection of independentlymodeled substructureswith incompatible

discretizationalongthe commonboundary.This approachhasmaturedto a point that it is now

very effective. However, becausethe interface technologyutilizes Lagrangemultipliers to

enforcethe interfaceconstraintconditions,the resultingsystemof equationsis not positive-

definite. Hence,state-of-the-artsparsesolver technologycannotbe utilized with the interface

technology.

Recently,analternativeformulationfor the finite elementinterfacetechnologybasedon

Lagrangemultipliers hasbeendeveloped[12]. The alternativeapproachrecaststhe interface

elementconstraintequationsin theform of multi-point constraints.This changeallowsaneasier

implementationof the formulation in a standardfinite elementcode and alleviatesthe issues
3



relatedto the resultingnon-positivedefinite systemof equations.The methodseemsto provide

reliableresults,but theformulationof the interfacemethodis still quitecomplicated.

A possibleremedy for theseshortcomingsis to modify the currenthybrid variational

formulationof the interfaceelementby enforcingthe interfaceconstraintsvia a penaltymethod

as opposedto the current Lagrangemultiplier approach.The primary consequencesof this

modification will be (i) a simple formulation that is easily implementedin commercialfinite

elementscodes,(ii) a positive-definiteandbandedstiffnessmatrixand(iii) areducednumberof

DOFs,sincetheLagrangemultiplier degreesof freedom(DOFs)will notbe present.Thus, the

proposedapproachshouldgreatlyenhancethecomputationalefficiencyof the interfaceelement

technology.

From an accuracypoint of view, the penalty method enforcesthe constraintsonly

approximately,dependingon the value of the penalty parameterchosen,while the Lagrange

multiplier approachenforcestheconstraintsexactly.Thepenaltymethodinterfaceapproachwas

recentlyattemptedusinga singleglobalvalueof thepenaltyparameterto enforceall constraints

[13]. This study demonstratedthe validity and the effectivenessof the penaltyapproachin an

interfaceelement.However,there is needfor specificguidelinesregardingthe selectionof an

appropriatevalue of the penaltyparameter,especiallywhen the substructuresto be connected

havedifferentmaterialand/orsectionstiffnesses.

Thereis a largebody of literaturerelatedto thedeterminationof anoptimal valueof the

penaltyparameter(see,e.g. [14-26]).However,there is no existing criterion for choosingthe

penalty parameter in the framework of the interface element under investigation. The

determinationof suchacriterionis theprimarythrustof theeffort presentedherein.

An effective and robust interface elementtechnologyhas beendevelopedusing the

4



penaltymethod.A significantpartof theeffort hasbeendirectedtowardidentifying thosemodel

characteristicsthat most strongly affect the requiredpenalty parameter,and subsequentlyto

developingsimple "formulae" for automaticallycalculatingthe proper penalty parameterfor

eachinterfaceconstraint.Thenewapproachhasbeenvalidatedthroughawide varietyof oneand

two-dimensionalproblemsthathavebeeninvestigatedextensivelyfrom bothananalyticalanda

computationalpoint of view. Finally, the penaltybasedinterfaceelementtechnologyhasbeen

implementedinto anexistingcommercialcode.
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2. GENERAL DESCRIPTION OF THE INTERFACE ELEMENT

Consider two independently modeled subdomains _ and _2 as shown in Figure l(a)

and 1 (b), respectively, for a 2D and for a 3D geometry. The two substructures are connected to

each other using an interface element acting like "glue" at the common interface. The interface

element is discretized with a set of nodes that are independent of the nodes at the interface in

subdomains f_ and fZ 2 . Both in the hybrid interface method and in the penalty method, the

coupling terms associated to the interface element are arranged in the form of a "stiffness" matrix

and assembled with the other finite element stiffness matrices as usual.

2.1

and 2z

conditions. Thus the TPE of the system assumes the form:

S S

The nodal displacements of the sub-domain f_j are identified by q_

Hybrid Interface Method

The hybrid interface method [6-12] introduces two vectors of Lagrange multipliers ,_

in the total potential energy (TPE) of the system to satisfy the displacement continuity

(1)

and qij. The

superscript o identifies the degrees of freedom (DOFs) that are not on the interfaces, while i

denotes DOFs that are on the interfaces. The displacement field uj of the sub-domain £)j is

expressed in terms of the unknown nodal displacements q ij as:

u., = NJ q.ij (2)

where Nj' can be the matrices of linear Lagrange interpolation functions.

The displacement field V is approximated on the entire interface surface in terms of
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unknownnodaldisplacementsqs as:

V=Tq_ (3)

where T is a matrix of cubic spline interpolation functions [27-29].

The first variation of _cis taken with respect to all the DOFs and the vectors of Lagrange

multipliers 2, and 22:

_,T/" q_, _, qs, q_, q_,21,_ = 0 (4)

On the interface part of the subdomains the following equations result:

uj=V, 2_j=tj, _+22=0 forj=l, 2 (5)

where {/is the traction on the interface. These equations show that:

• Displacement continuity is enforced,

• 2.j are interface tractions,

• the total traction is zero on the interface.

The first variation of xyields the system of equations:

x;'I(i ° o o oM, o
K_ i K_ ° 0 0 0 0 0

0 0 K; K_° 0 0 M2

o o x;' K;° 0 0 0
0 0 0 0 0 G I G 2

M_ o o o Gl o o
o o M; o c; o o

i] "q f,'
o o

q, I f,

lq; f;

, q; [-' J;'

0

._/ o

(6)

It can be seen that the resulting global stiffness matrix is sparse, symmetric, not banded and not

positive definite. Inside [K] the interface element is represented by the coupling terms Mj and Gj

which augment the stiffness matrix of the subdomains.

A "stiffness" matrix and generalized vector of unknown displacements can be associated

with the interface element, so that:
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o o o M, o
o o o o M_

0 0 0 G t G 2

M_ 0 G_ 0 0

o M; G; o o

q

q'2l

qs
(7)

2.2 Penalty Hybrid Interface Method

In the penalty hybrid interface method the displacement continuity constraint is imposed

in a least squares sense through two vectors of penalty parameters y_ and Y2. Thus the TPE of

the system assumes the form:

1 )_ _- )__="°,+"°,+U' I(v-_' ds+2r,-_(v-_ a_ (8)
S s

The displacement fields u j and V are approximated in a similar way as in the original hybrid

interface method.

The first variation of n" is taken with respect to all the DOFs, but not the vectors of

penalty parameters y_ and ?'2, which are predetermined constants.

67"C q_, ql , qs , q_2, _ = 0 (9)

We now define:

G 'i N r (1 O)

s

G)"=yjS(N_'Tj)ds (11)
s

G" = FG':'7_ (12)
.! L ./ j

G _' T r . )ds (13).,=,',I(, r,
S
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So the global system of equations of the penalty hybrid interface method assumes the following

form:

K_ ° K_' 0 0 0

x_° xi'+oi' -c__ o o
0 -Gi _i Gi__+ G2 _ -G; i 0

o o -c; x;+c_' K;'
o o o K;' K;"

" O"

ql
I

qt

q,_

q_
0

_q2

_f,,']

£

.f2"

(14)

This is a symmetric, banded and positive definite (after boundary conditions are imposed) global

stiffness matrix. The "stiffness" matrix and generalized vector of unknown displacements

associated with the interface element can be defined such that:

l O '_' lie:(=

O' Gi_ + 0}3 loi_'
1G__ G_'JLq_J

(15)
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3. DETERMINATION OF THE PENALTY PARAMETERS

In the penalty method, the displacement continuity constraint is imposed through penalty

parameters, a set of predetermined constants. The FE solution obtained using this method is

approximate, with its accuracy depending on the value of the adopted penalty parameters. It is

known that the penalty parameter should depend on the material and/or geometric properties of

the two sub-regions being joined. Further, there is a relationship between the penalty parameter

and the Lagrange multiplier that enforces a given constraint.

The Lagrange multiplier method imposes the continuity constraint exactly. Thus, the

Lagrange multiplier method defines the upper limit to the accuracy of the penalty method.

Knowledge of the correct solution facilitates relating the value of the penalty parameter to the

geometrical and material properties of the model under consideration. In our pursuit of the proper

penalty parameter values, a variety of one and two-dimensional problems have been studied with

both the Lagrange multiplier method and the penalty method.

The types of finite elements that have been investigated are: conventionally formulated

and reduced integrated Timoshenko beam elements, plane stress quadrilateral elements and plate

elements based on the first order shear deformation theory (FSDT), or Mindlin plate theory. For

each finite element formulation, different penalty parameters are associated to the various nodal

DOFs. For example, the Timoshenko beam element has three independent nodal DOFs: the axial

displacement u, the transverse displacement w and the rotation _. Thus, three different penalty

parameters y,,, 7"w and y_, are employed to enforce the interface continuity constraints on the

DOFs u, w and _u. An independent choice of the penalty parameters is of fundamental importance

since each degree of freedom can be related differently to the material and geometric properties
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of thefinite elementmodel.

The methodologyadoptedin finding therelationswill now bedescribed.First the most

commonloadcasesfor theFE typeunderconsiderationareappliedseparatelyto a simplemodel

of oneor two elements.For example,for theTimoshenkobeamelementthefollowing loadcases

are considered:axial load, transverselydistributed load, concentratedtransverseload and

concentratedmomentappliedat thetip. Theseloadsareappliedto two differentmodels:a single

beamelementconnectedto afixed point by oneinterfaceelement(seeFigure2a),andtwo linear

beamelementsconnectedusingan interfaceelementandclampedat thetip (seeFigure2b).

The formulationsandsolutionsareobtainedusingboth the Lagrangemultiplier method

and the penalty method. The displacementsolutions from the two methods are compared

individually for eachdegreeof freedom.Theratio betweenthetwo solutionsis expressedin the

fOrlTl_

bl penalty f
-14 (16)

_l Lagrange y

wheref=f(element geometric properties, material properties, and loads)

Once this simple expression has been identified, the penalty parameter y is set equal to:

Then, the ratio between the

properties of the element:

r= flf

solutions becomes independent

(17)

of material and geometrical

The accuracy of the solution depends directly on the value assigned to the parameter ft. For

example, if fl is equal to 1000, the penalty solution differs from that obtained by use of the

11
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Lagrange multipliers by 0.1%. The degree of precision of the solution cannot be indefinitely

increased, since round off amplification error would rise. However, once a reasonable

compromise between constraint representation error and the round off error has been evaluated, a

value of fl can be identified that is able to produce the same level of accuracy for every

combination of material and geometrical properties.

In some cases, however, the displacement solution related to a particular DOF depends on

the penalty parameter used to enforce a different DOF. An example of this situation is

represented by the following relations:

ll( enalty __ __-I+ f + f2 (19)
ll[ "agrmrge Yl Y2

hi; enalty A
- 1 + -- (20)

zll_grmlge )12

where u_ and u2 are displacement solutions computed at the same node for two different DOFs,

while f, f2 and f3 are independent functions of the model properties and the loads.

Two possible options are available in this situation. The first option is to choose

yj = 2fir and )'2 = 2flf2 in order to obtain the desired simple relation between the solution ratio

and fl only for the DOF 1.

uff "''y 1 1 1 uP_"t'Y f3 (21)=I+--+--=I+-- -l+--
u( ''g'g_ 2 fl 2 fl fl u_"g='ge 2 fl f 2

The other option is to set ;rl = 2flf_ and Y2 _- _L' favoring a simple relation for the DOF 2.

u(e'°'y 1 L uy" 1
- I + -- + - 1 + -- (22)

U( "ag_'ge 2/_ /_f3 U_ 'agraT'ge /_

Clearly a conflict arises about the value of the penalty parameter 7"2. A reasonable way to
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addressthis issueis to comparethetwo possiblevaluesfor )'2 andto choosethegreater.Thus,

theaccuracyfor oneDOF is directly proportionalto fl as desired, and the precision of the other

one should be slightly higher.

As discussed previously, one of the main objectives of this study is to establish an

automatic choice of the optimal penalty parameter. The investigations of the ratio between the

solutions based on Lagrange multipliers and the penalty method constitute the basis for pursuing

this goal. Nevertheless, it should be underlined that an exact value of the penalty parameter is not

required. Rather, a value that is of the right order of magnitude is sufficient. In fact, even in the

most complex FE analysis, there exists a range of values for this parameter for which the

numerical outcomes change very little. This range can equal as much as 12 orders of magnitude

for simple analyses, but usually is not less than two orders of magnitude in most situations.

3.1 Computational Example -Beam Under Uniaxial Load

In order to limit the length and the complexity of the mathematical derivation, the

example described here is one of the simplest available: the extension of a beam under a uniform

load P applied at the tip. This case is analyzed using a single linear beam element connected to

one fixed point V by a displacement continuity constraint, which is imposed through a Lagrange

multiplier or a penalty parameter. The configuration of the geometry and the mesh is plotted in

Figure 2a.

3.1.1 Lagrange Multiplier Method

The hybrid interface method introduces a Lagrange multiplier ,_ in the total potential

energy (TPE) of the system to satisfy the displacement continuity condition. Thus the TPE of the

13



systemin this studyassumesthefollowing form.

(23)

where z_ is the TPE of the bar; r_ and v are, respectively, the reaction force and the

displacement at point V. Expanding and simplifying:

.=

(24)

'I l 2• du 2
1 lEA dx-___f.u, +)q .(v-u,)-r, .v (25)

]g" _ "2 " i=1

where E is the Young's modulus, A is the cross sectional area andj_ are the applied nodal forces.

If the displacements are approximated linearly by:

u= _"u/Nj. =u_ +u 2
j=l

(26)

a- takes the following form.

=--" /gi:¢ 2 _ ---_- dx - P . u2 + ._ . (v - u, ) - r_ . v (27)

Setting to zero the first variation of x, taken with respect all the DOFs, produces the following

equaions.

8______._= EA . ---z-a-l dx - 3q = 0
a,,, _oV.dx )

(28)

(29)

G_Z/"

--=& -r_ =0
Ov

(30)
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C3y/"

-- ---- V -- _/I -----0

a&
(31)

Thus, the resulting FE model is:

EA EA
--- 0 -1

L L

EA EA
0 0

L L

0 0 0 1

-1 0 1 0

(32)

Since V is fixed, v = 0, and the solution is found to be:

r_ = ,;/1=-P (33)

_I=V:O (34)

PL
ld 2 --

EA
(35)

The solution provided by the hybrid interface method coincides with the exact theoretical one.

3.1.2 Penalty Method

In the penalty method the displacement continuity constraint is imposed through a

penalty parameter Yt- Therefore the TPE of the system takes the form:

1 .(v )57r=rc,+_7, -u, -_.v (36)

_2 2 1 )5
i=1

(37)

1 ! du dx-_f.u,2 1 )2
_=--.

+2;"'(v-u' -r,.v (38)2 --_ i=l

Approximating the displacements linearly:
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EA

2 u,--L-- u,--_- ax-P.u, +_r,.(v-u,) -_, .v (39)

The first variation of rc in this case is taken with respect all the DOFs, but not the penalty

parameter.

Ou, --_ uj --_ dx - r, - u, = (40)

Ou-S= o'_,_ J ,--_ - e =o (41)

02Z"

-_=y, .(v- u)- _,=0 (42)

The resulting FE model is:

-EA

---_+ Yl

EA

L

-Yl

EA

L

EA

L

0

-yj

Yl

(43)

Solving the system of equations:

r_ = -P (44)

P
u, = -- (45)

Yl

u2= _ P (46)

3.1.3 Comparison Between the Two Methods

When the penalty parameter approaches infinity, the penalty method solution tends to the

one obtained using the Lagrange multiplier method.
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Limit u_ = Limit P = 0 (47)

r,_ y,-+= _.y] EA ) -EA P

Moreover, the constraint that has been enforced is:

C, (//,,,2,v) = (v-,,)

If we define uiy,u2y,vy

(48)

(49)

as the solutions derived from the penalty formulation, it is possible to

verify the well-known relation between the Lagrange multiplier and the penalty parameter.

3.1.4

(50)

Relation Between Penalty Parameter and Beam Properties

The exact displacement of the tip of the beam matches that from the Lagrange multip]ier

finite element formulation.

L
¢-_'_'= --p (51)

//2
EA

The Penalty parameter solution u 2pe''t'_-differs from the exact one by the presence of an additional

u2 = EA

term (P / Yi)"

(52)

penalty exactThe ratio u2 /u 2 is evaluated in order to identify the relationship between the two

solutions:
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penalty EA P

u2 - =lq (53)

The penalty parameter ?'j is now substituted by:

It follows that the ratio between the solutions becomes independent of material and geometrical

properties of the beam.

ld penalty 1
2 - 1+-- (55)
u;x°c' p

A similar procedure is followed for the two-dimensional and three dimensional problems

of any kind. Details are omitted for brevity. But the final results of this investigation are

presented in the appendix for selected element types.

A common approach is to set the penalty parameter equal to the largest diagonal term in

the stiffness matrix multiplied by a factor 10n, where n is a preselected integer value. For the

simple example above, Eq. (54) yields an equivalent result. However, in general the approach

developed here in yields expressions that are not directly proportional to coefficients in the

stiffness matrix.

3.2 Automatic Round-Off Error Control

Due to finite precision in floating-point arithmetic used when the interface element

stiffness matrix is numerically integrated, the stiffness coefficients are always approximated.

However, in order to be imposed correctly (and to contribute no energy to the system), the
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displacementcontinuity constraint (V-u) requiresthe sum of the terms in every row of its

stiffness matrix (15) to be zero. This condition usually cannot be achieved, due to the round-off

error, and the resulting inaccuracy grows with the value of the penalty parameter. Precisely, the

important measure is the ratio between the order of magnitude of the interface dement stiffness

matrix rows' imbalance and the element stiffness. If K, is the stiffness associated to the n-th

nodal DOF, it is sufficient to consider the ratio:

Q,, = ER,, (56)
K,,

where ER,, is the unbalance in the interface ¢l_m3Ig stiffness matrix row related to the DOF n.

ER,, = _., K,_j (57)
J

When the value of Q,, exceeds about

appreciable. The discussed row imbalance is

parameter, ER, oc 7. It is also approximately true that:

E R,, oc r oc fl. K,,

1.10 -4 errors in the solution may become

proportional to the value of the penalty

Q,, oc fl (58)

Accordingly, an algorithm has been developed to control the round-off error. Its steps can

be summarized as follows:

• Stiffness terms for every nodal DOF in the interface element are computed from known

geometrical and material properties.

• For each row in the stiffness matrix:

o The highest stiffness term is selected and assigned to a variable K

o The row imbalance of the stiffness matrix is stored in a variable ER
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ER.
o Q =-- is evaluated

K

• The highest Q found is compared to a given constant value C. Typically C = 1.10 -7 is used.

C
• If Q > C the parameter fl is reduced according to: fl,,ew = . fl,

• The interface element stiffness matrix is recalculated using the new value /3 =/3"_'.

This approach reduces the risk that round-off errors could adversely affect the solution.

Thus, the initial value of fl can be increased, in order to get a higher degree of accuracy,

knowing that it will be automatically reduced if rounding errors don't allow that precision to be

realized.

3.3 Implementation of the Model as an Abaqus User Element Subroutine

To test the behavior of the penalty method based "interface" element and the accuracy of

the obtained relations for an automatic choice of the penalty parameters, the element has been

implemented in the commercial finite element code ABAQUS as a User Element Subroutine

(UEL) [30].

The UEL subroutine receives all the necessary information about geometry and material

properties of the two connected meshes of finite elements from the input file. Then, the stiffness

matrix of the interface element is built as previously defined:

0

(60)

The appropriate values of penalty parameters for each constraint are assigned automatically

inside the subroutine.
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4. NUMERICAL RESULTS

4.1 Isotropic 2D Cantilever Beam with a Vertical Interface

A two dimensional cantilever beam is assumed to be composed of two domains. The

domains are meshed independently and joined by one interface element. The geometrical and

load configuration of the problem are represented in Figure 3. Others properties are: P = 1,

Q= 1, E 1 = E 2 = 1 and thickness = 1.

Only one interface element is adopted in this simple case, since more would not improve

the solution accuracy. This element is identified by the vertical interface that contains the three

DOFs V1, V2 and V3. In discretizing the two subdomains, four-noded bilinear plane stress

elements are used. Two different load conditions are investigated: axial and bending loads. This

problem may be considered a patch test for the element developed herein.

4.1.1 Axial Load

Under the condition of a uniformly distributed axial load applied at the free end of tile

beam, the interface element results are in agreement with the exact solution to the number of

significant digits available. Results from two different beam discretizations are reported in Table

1.

It is important to study the stability of the solution obtained by the new method for

various values of the nondimensionalized penalty parameter y/E. For this test the automatic

choice of the optimal parameter 7' was temporarily disabled. Results are produced in graphical

form in Figure 4. It can be observed that the solution is stable for a wide range of values of the

nondimensionalized penalty parameter y / E.
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4.1.2 Bending Load

For the bending load case, a comparison is made to both the classical beam solution and a

reference finite element solution. The coarse mesh of bilinear quadrilateral elements cannot

exactly recover the classical solution. In Table 2 are results obtained from two different beam

discretizations. The FE results, marked as Abaqus, are obtained from a traditional analysis using

a compatible finite element model of the beam.

The stability of the solution obtained is tested also in this load case for various values of

the nondimensionalized penalty parameter z/E. Again the automatic choice of the optimal

parameter y was temporarily disabled. Results are produced in graphical form in Figure 5. The

method proves very reliable and stable for bending loads.

4. 2 Tension-Loaded Plate with a Central Circular Hole

A plate with a central circular hole is subjected to a uniform load at its edges. This well

studied elasticity problem allows one to investigate the capability of the interface elements in

performing global/local analysis. Geometrical and load configurations are plotted in Figure 6.

The plate height and width are, respectively, h = 100 and b = 200; the radius of the hole is

r = 2.5 ; the distance of the interface from the center of the hole is 5.

Taking advantage of symmetry, only one quarter of the plate is modeled. A fine mesh is

applied in the area between the hole and the interface, while a much coarser mesh is adopted

elsewhere. The complete finite element model is reported in Figure 7a. For a better view, the area

near the hole is depicted in Figure 8a. The elements used to mesh the two domains are plane

stress bilinear quadrilaterals, Abaqus CPS4. Five interface elements are employed along each

segment of the interface for a total of 11 interface nodes.
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Figures9aand 10ademonstratethatonly light discontinuitiesin the valuesof stressesat

the interfacearepresent.Horizontalandverticaldisplacementsdonot showanychangein their

valuesacrosstheinterface,asplottedin Figures11aand 12a.

In orderto comparethepreviousmapsof stressesanddisplacements,a conventionalFE

modelhasbeenbuilt with Abaqus.Figures7band8bshowtheadoptedmesh.Stresseso-j_, o'22

and displacements U_ and U 2 are provided in Figures 9b to 12b. Comparing the maps of the

displacements, it can be noticed that the interface elements do not introduce any discontinuities

at the interface. The distribution of the stresses shows small differences, but they can still be

considered sufficiently accurate.

The elasticity solution for an infinite plate with a central hole loaded in uniform tension

predicts that the stress concentration factor, K,, is equal to 3.0 at the upper edge of the hole.

Moreover, it provides the equation for evaluating the change in o-_ along the line axis X 2 .

Using this expression, we computed the stress variation along X 2 for our geometrical

configuration and compared this result with our FE models. Figure 13 graphs the exact elasticity

solution against the penalty interface and the conventional FE ones. The results are all very close,

validating the precision of the developed method.

4. 3 Composite 2D Cantilever Beam with a Vertical Interface

A 2D composite cantilever beam made of five materials is considered. The geometrical

and loading configurations are the same as for the cantilever beam analyzed previously (see

Figure 14). The entire left domain of the beam is made of one isotropic material having a

Young's modulus equal to 2.9E+7 MPa and Poisson's ratio 0.25. The right domain is composed
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of four isotropic layersof equalthickness.They have all the samePoissonratio 0.25,but the

Young's modulusE varies.Starting from the bottom,the layerwiseE takes the values: 1E+6

MPa, 1E+7 MPa, 5E+6 MPa and IE+8 MPa. A conventional finite element model (10x4-10x4)

has been used as a baseline to test the results from the penalty interface method.

Under these conditions the interface is expected to undergo abrupt changes of slope. An

important property of the interface elements is the automatic choice of the penalty parameters. In

fact, the interface elements can join the four different layers to the left domain with the dissimilar

stiffness. This behavior can increase the accuracy of the results, avoiding the possible corrupting

effect of an overestimated penalty parameter.

The results are shown for two possible interface discretizations: 1 interface element and 4

interface elements. Axial and vertical displacements at the free end of the beam under axial load

are plotted in Figures 15 and 16. Similarly, deflections for transversal load case displacements at

the free end of the beam are reported in Figures 17 and 18.

Displacements from the interface element model compare very well to those from the

conventional finite element model. Only in the transversal load case, a single interface element

appears to slightly overestimate the vertical displacements.

4.4 Clamped-Clamped Asymmetric Beam

In this section an asymmetric beam, clamped at both ends, is loaded with two

concentrated loads applied at two different points of the mesh. This problem was studied in

[4,13] to validate the proposed interface method. The geometry of the problem and the position

of the two concentrated loads are shown in Figure 19.

The beam is meshed using two domains with different material properties. The ratio of
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theYoung's modulusin the domainsa and b is 0.2. The domain a is discretized with an 8 by 8

mesh; two different meshes are adopted for the domain b. The mesh used for the conventional FE

analysis is set to be 8 by 8, so that at the interface there is the same number of nodes. A different

mesh is needed for discretizing domain b in order to test the interface model's capabilities. An 8

by 12 mesh has been chosen. The two forces, having the same magnitude F=I but different

directions, produce a complex state of deformation with strong stress concentrations at the

interface that can challenge the interface element.

Figures 20 and 21 compare the deformed configuration, produced by a conventional

FEM, with that obtained using a FEM with four interface elements at the interface. No visible

differences can be observed.

The test is completed by a comparison between the in-plane displacements u and v along

the interface as shown in Figures 22 and 23. The four interface elements connect two interfaces

with a different number of nodes. Both displacement components are in satisfactory agreement

with the conventional analysis.

4.5 Simply Supported Plate Under Sinusoidal Load

A simply supported plate is subjected to a transverse load distributed over the surface

according to the following expression:

q = q0 sin nx sin n-y (61)
a b

In which q0 represents the intensity of the load at the center of the plate, a and b are the plate

dimensions, respectively, in the in-plane directions x and y.

We assume the plate to be square with equal side dimensions, a = b = 2. The value of q0
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is takento be 1. Takingadvantageof geometricalandloadingsymmetries,only aquarterof the

plateis analyzed.As shownin Figure24,a fine meshis usedfor a squarenearthecenter,while

the remaining surfaceadoptsa coarsemesh.The four nodedAbaqusshell elementS4R is

employedto meshbothdomains.Two interfaceelementson eachedgeareusedto connectthe

two domains.Otherspropertiesare: E_ = E 2 = le6, v = 0.25 and thickness -- 0.1. Figure 25 plots

deformed and undeformed configurations of the plate as seen from the bottom.

A classical plate solution to this problem exists in the literature. In Figure 26, the

transverse displacements w along x at y = 1 are reported. Even in the presence of a high gradient

of deformation, the model behaves well. This further confirms our confidence that the developed

method is both robust and accurate.

27



5. CONCLUSIONS

In the present work, an effective and robust interface element technology has been

developed using the penalty method. This approach overcomes the numerical difficulties

associated with the existing methods based on Lagrange multipliers. Additionally, the present

formulation leads to a computational approach that is very efficient and completely compatible

with existing commercial software. Significant effort has been directed toward identifying those

model characteristics (element geometric properties, material properties and loads) that most

strongly affect the required penalty parameter, and subsequently to developing simple

"formulae" for automatically calculating the proper penalty parameter for each interface

constraint. A wide variety of one and two-dimensional problems has been investigated

analytically and computationally in order to correctly identify the analytical functional form of

the penalty parameter for each constraint within many classes of problems.

The resulting interface element is particularly efficient for finite element modeling of

composite structures. When the material properties vary across and/or along the interface, the

present method is often much more accurate than adopting a unique value of the penalty

parameter.

The present interface element has been implemented in the commercial finite element

code ABAQUS as a User Element Subroutine (UEL), making it convenient to test the behavior

and accuracy of the interface element for a wide range of problems. This approach has been

validated by investigating a variety of two-dimensional problems, including composite

laminates.
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APPENDIX

The types of finite elements that have been investigated are: conventionally formulated

and reduced integrated Timoshenko beam elements, plane stress quadrilateral elements and plate

elements based on the first order shear deformation theory (FSDT), or Mindlin plate theory. For

each finite element formulation, different relations between penalty parameters and model

characteristics (element geometric properties, material properties and loads) have been found.

Results of this investigation are briefly presented in this appendix.

Reduced integrated Timoshenko beam element

Consider the problem of two linear reduced integrated Timoshenko beams connected

through an interface element. The interface node is identified as i, the last node of the first beam

is identified as 1 and the first node of the second beam is identified as 2. The Timoshenko beam

element has three independent nodal DOFs: the axial displacement u, the transverse displacement

w and the rotation _/. Thus, three different penalty parameters y,, y., and y_, are employed to

enforce the interface continuity constraints on the DOFs u, w and gt. In Table A 1 are defined the

penalty parameters to be associated with each of the constraints.

Results obtained in our research lead us to affirm that the penalty parameters should be

related to model characteristics as shown in Table A2. Where two values are present for the same

DOF the bigger is chosen. Moreover, the subscript 1 and 2 marks, respectively, the material and

geometrical properties belonging to the first and to the second beam.

Plane stress quadrilateral elements

As for the Timoshenko beam case, consider the problem of two plane stress quadrilateral
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elementsconnectedthroughan interfaceelement.Thegenericnodeon the left of the interface is

named 1, while the one on the right is named 2. Each node has two DOFs: the in-plane

displacements u and v. Under conditions of axial load (load perpendicular to the interface

surface), the following expression for the penalty parameter has been derived:

yk = fl.( Ektk l k=l,2

\a, )

Where tk and ak are, respectively, the thickness and the width of the K th element.

This expression is very simple, but still contains information that would be difficult to

obtain, namely: the width of the element, a. Inside the UEL subroutine only the coordinates of

the nodes on the interface are known. Thus, assuming good modeling practice in FE of using

elements with aspect ratio close to unity, we choose to approximate the dimension in the

direction perpendicular to the interface with the one parallel to it. According to the adopted

symbols, the expression for Yk becomes:

( E,t, I

r"=Pk b. )

This simplification strongly affects the expression obtained for the flexuraI load case

(load parallel to the interface surface), which is modified in the following way:

{ F '"71

A final step is required in order to obtain a single expression for an automatic evaluation

of the penalty parameter. It consists in eliminating the scalar 4 from the denominator of the last

expression for Yk • This simplification is important since the interface could have any orientation,

so it is better to not make any distinction between horizontal and vertical displacement DOFs. In
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conclusion,only two penaltyparametersareneeded:y_for both the DOFs u and v of the nodes

on the left of the interface, 72 for the ones on the right of the interface,

Plate elements

In plate elements each node has six DOFs: the in-plane displacements u and v, the

transverse displacement w and the rotational DOFs (0_, Oy, 0_). The in-plane, transversal and

rotational DOFs require different penalty parameters for optimal behavior. In particular: one, y,,,

is assigned to the in-plane DOFs (u, v), the second, 7,_, to the transverse DOF w and the third,

Yo, is shared by all the rotational DOFs (Ox, 0_, 0z). The constraints are associated to the

expression for computing the penalty parameters as in Table A3.

Results obtained using the presented method have been simplified as for the plane stress

quadrilateral element by approximating the element dimension in the direction perpendicular to

the interface with the one parallel to it. The simplified relations are shown in Table A4.
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Table 1. Tip axial displacement numerical results for beam extension.

Mesh Solution

Abaqus 20x8 4.000

Abaqus with interface Element lOx8 Left / 10x2 Right 4.000
10x8 Left/10x4 Right 4.000

Classical 4.000

Table 2. Tip deflection numerical results for beam flexure.

Mesh Solution

Abaqus 20x2 258.800
20x4 260.000
20x8 260.400

Abaqus with interface Element IOx8 Left / 10x2 Right 259.500
10x8 Left / 10x4 Right 10x8 261.100

10x8 Left / 10x8 Right 260.400

Classical . 265.6

Table A1. Penalty parameters associated with each of the constraints enforced in the Timoshenko

beam element.

Penalty parameter

YU I

Yv,'I

Constraint enforced

r,,2 (.,-.2)

Yw2 wi - w2 )

Yv2

(W_ -qJl)

(W i - ho2)
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Table A2. Expression for computing the penalty parameters in a Timoshenko beam element.

Ywl

YU 2

YW2

Y_2

Axial load Moment

applied at the

tip

Transverse load applied Transversely Distributed

at the tip

,4Eli1 k_AiGi j

or fl . EllI

Load

2_

fl'( L4, L_

ft. 2191

c',_ 4E, I_ klAiG 1

2L 2

8E212 2k2A2G2

2

k2A2G2

fl'I L32 + L2 )
k2 A2G2

P

k2A2G2

or ft. 2EzI2
L2

or ft. E212
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Table A3. Penalty parameters associated with each of the constraints enforced in a Mindlin plate

element.

Penalty parameter Constraint enforced

r,,, (",-",)

r,,, (v,=v,)

rw, (w,-w,)
to, (4-o,)
r,.2 (,.,-.2)

r,,2 (_,-_2)
r.2 (w,-w_)
to2 (o,-o,)
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Table A4. Expression for computing the penalty parameters in a Mindlin plate element.

_u l

Yvl

Ywl

YO1

_u2

Yv2

YW2

Y02

All kind of loads

2

2b_2

, EJ_

2

2b_

P ( + 1
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(a) Interface element and (b) conventional FE mesh - zoom of

the deformed configuration.
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(a)
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+8.837E-81
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+1.839E+00

+2.078E+00

+2.317E+00
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Figure 9.

(b)

(a) Interface element and (b) conventional FE solution -

stress distribution in the direction 1 (cy,,).
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-5.407E-01
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-1 .901E-01
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+4.486E-02

+i .6238-01

+2.798E-01
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(b)

Figure 10. (a) Interface element and (b) conventional FE solution -

stress distribution in the direction 2 (r_22).
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Figure

(b)

11. (a) Interface element and (b) conventional FE solution -

horizontal dispid6e_efit diSt¥_bftion (U_).
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U2 VALUE
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--1.297E+01

-I.179E+01
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-3.537E+00
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-I.179E+00
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Figure

(b)

12. (a) Interface element and (b) conventional FE solution-
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vertical displacement distribution (U2).
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